Preview

Communicology

Advanced search

Media Platforms and Algorithms: content and social implications

https://doi.org/10.21453/2311-3065-2020-8-2-108-124

Abstract

The paper considers the new features of the digital media environment associated with the widespread introduction of platforms and algorithms in media practices and reveals the technological, business and social background of these innovations. The application of platforms and algorithms is a powerful tool for implementing the commercial imperative in the media. In general, this is a characteristic feature of the development of modern society - a trend towards comprehensive metrization. Along with the advantages, the use of predictive algorithms, personalization of content based on tracking of past communicative behavior has a number of negative social consequences. E.g., ‘filter bubbles’ contribute to the formation of closed information segments. The model of social behaviorism underlying the recommendation services contributes to the modification of people’s informational behavior. Algorithmization of media landscape strengthens the trends of content delivery to individual consumers, and not to citizens inclined to make joint decisions regarding the common interests of social life

About the Author

M. M. Nazarov
Institute of Social and Political Studies of the Russian Academy of Sciences
Russian Federation


References

1. Вартанова Е.Л. (1999). К чему ведѐтконвергенция СМИ? // Информационное общество. No 5. С. 11-14.

2. Глазьев С.Ю. (2013). О политике опережающего развития в условиях смены технологических укладов // Вестник РАЕН. №1. С. 29-35.

3. Паризер Э. (2012). За стеной фильтров. Что интернет скрывает от вас. М.: Альпина Бизнес Букс.

4. Харви Д. (2007). Краткая история неолиберализма. Актуальное прочтение. М.: «Поколение».

5. Шваб К. (2018.) Четвертая промышленная революция. М.: Эксмо.

6. Энциклопедия эпистемологии и философии науки (2009). М.: Канон+.

7. Andrejevic M. (2013). Infoglut: How Too Much Information is Changing the Way We Think And Know. London, New York: Routledge.

8. Andrejevic M. (2020). Automated Media. London, New York: Routledge. Beer D. (2016). Metric Power. London: Palgrave Macmillan.

9. Bruns A. (2019). Filter bubble. In: Internet Policy Review. Journal on internet regulation. November 2019. Volume 8. Issue 4 [access]: http://policyreview.info/concepts/filter-bubble.

10. Chandler D., Munday R. (2020). A Dictionary of Media and Communication (3 ed.). Oxford University Press.

11. Evens T., Donders K. (2018). Platform Power and Policy in Transforming Television Markets. New York: Palgrave Macmillan.

12. Finlay S. (2014). Predictive analytics, big data and data mining: myths, misconceptions and methods. New York: Palgrave Macmillan.

13. Gilder G. (1994). Life After Television. New York: Norton.

14. Hallinan D., Striphas T. (2016). Recommended for you: The Netflix Prize and the production of algorithmic culture // New media & society. Vol. 18 (1). P. 117-137.

15. Jenkins H. (2006) Convergence Culture: Where Old and New Media Collide. New York: New York University Press.

16. Jones P., Holmes D. (2011). Key concepts in media and communications. London: Sage.

17. Krafft T., Gamer M., Zweig K. (2017). What did you see? Personalization, regionalization and the question of the filter bubble in Google’s search engine // Computer Science. Cornell University. Conference’17, July 2017, Washington, DC, USA [el. source]: https://arxiv.org/abs/1812.10943.

18. Lanier J. (2018). Ten arguments for deleting your social media accounts right now. New York: Henry Holt & Company.

19. McConnell T. (2014). The Programmatic Primer. A marketer’s guide to the online advertising ecosystem. London: WARC.

20. Negroponte N. (1999). Being Digital. New York: Knopf.

21. Pariser E. (2011). The Filter Bubble: What the Internet is Hiding from You. London: Penguin.

22. Poster M. (1995). The Second Media Age. London: Polity Press.

23. Rheingold H. (2000). The Virtual Community. Mass: The MIT Press.

24. Scott S. (2019).YouTube’s algorithm is spreading a series of unfortunate far-right events. The Drum. 14 May: https://www.thedrum.com/opinion/2019/05/14/youtube-s-algorithm-spreading-series-unfortunate-far-right-events.

25. Seargeant P., Tagg C. (2019). Social media and the future of open debate: A user-oriented approach to Facebook’s filter bubble conundrum // Discourse, Context & Media. No.27. P. 41-48.

26. Siegel E. (2013). Predictive analytics: the power to predict who will click, buy, lie or die. New Jersey: John Wiley & Sons.


Review

For citations:


Nazarov M.M. Media Platforms and Algorithms: content and social implications. Communicology. 2020;8(2):108-124. (In Russ.) https://doi.org/10.21453/2311-3065-2020-8-2-108-124

Views: 182


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-3065 (Print)
ISSN 2311-3332 (Online)